Yonsei Advanced Science Institute

Logo and Menu

Research

Publications

Oscar Hsu-Cheng Cheng, Dong Hee Son*, and Matthew Sheldon*
Light-Induced Magnetism in Plasmonic Gold Nanoparticles
Nat. Photonics, 14, 365–368
Date: Jun 1, 2020

Strategies for the ultrafast optical control of magnetism have been a topic of intense research for several decades because of the potential impact in technologies such as magnetic memory1, spintronics2 and quantum computation, as well as the opportunities for nonlinear optical control and modulation3 in applications such as optical isolation and non-reciprocity4. Here we report experimental quantification of optically induced magnetization in plasmonic gold nanoparticles due to the inverse Faraday effect. The induced magnetic moment is large under typical ultrafast pulse excitation (<1014 W m−2 peak intensity), with magnetization and demagnetization kinetics that are instantaneous within the subpicosecond time resolution of our study. Our results support a mechanism of coherent transfer of angular momentum from the optical field to the electron gas, and open the door to all-optical subwavelength strategies for optical isolation that do not require externally applied magnetic fields.

Copyright and Address

  • ADDRESS IBS Hall 50 Yonsei-ro, Seodaemun-gu, Seoul 03722
  • TEL +82-2-2123-4769   FAX +82-2-2123-4606
  • E-MAIL ibs@yonsei.ac.kr
  • Copyright © IBS Center for NanoMedicine,YONSEI UNIV.
    ALL RIGHTS RESERVED.

Display Page Loading Image

Top