

Controlling magnetic anisotropy via cation exchange and the development of ferromagnetic mini-Torquer

Wonho Cho¹, Jungsu D. Lah^{2,3}, Gooreum Kim^{2,3}, Jongseong Park^{2,3}, Daeun Kang^{2,3}, Jihye Shin^{2,3}, Minsuk Kwak^{2,3*}

¹Department of Materials Science & Engineering, Yonsei University, Seoul, Republic of Korea ²Department of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea ³Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea

Scheme

I. Structural Properties

I. 100 nm m-Torquer

Fig1. Structural properties before & after cation exchange. (a) TEM image of 17 nm Fe_3O_4 before cation exchange. (b) TEM image after cation exchange with 2mmol CoCl₂-TOP. (c) XRD analysis of Fe_3O_4 and $Co_xFe_{3-x}O_4$. (d) Energy dispersive X-ray spectroscopy (EDS) image of $Co_{0.36}Fe_{2.64}O_4$.

II. Magnetic Properties

Fig3. Analysis of particle size. (a) TEM image of 30 nm CoFe₂O₄ before surface modification. (b) Coercivity and Saturated Magnetization values of 30 nm CoFe₂O₄. (c) Magnetic hysteresis loop of 30 nm CoFe₂O₄ before surface modification. (d) TEM image of 100 nm m-Torquer after surface modification with 250µL. (e) DLS analysis of 100nm m-Torquer Hydrodynamic size.

II. c-Fos Expression

