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I. Synthesis of monodisperse magnetic iron oxide nanoparticles

Lewis acid-base assisted cobalt cation exchange on iron oxide 
nanoparticles   

(a) 

The engineering of the critical magnetic properties of magnetic 
nanoparticles (MNPs), encompassing saturation magnetization (MS), 
coercivity (HC), magnetic anisotropy constant (K), blocking 
temperature (TB), and magnetic relation time (τN and τB), is crucial for 
diverse biomedical systems such as sensing, drug delivery, and 
hyperthermia. 
 Controlling anisotropy constant can be achieved by alterations of size, 
shape, composition, and architecture of magnetic nanoparticles. 
Where, cation-exchange, is one of effective approaches for controlling 
anisotropy constant on magnetic nanoparticles. Soft magnetic Fe3O4 
has an inverse spinel structure characterized by Fe2+/3+ ions 
occupying octahedral sites (Oh) and Fe3+ ions occupying tetrahedral 
sties (Td). Substitutional doping occurs with Co2+ ions replacing Fe2+ 
ions in the Oh sites. 
 Here, we studied the reaction kinetics and mechanism of the cation 
exchange on magnetic nanoparticles, resulting in well-defined CoxFe3-

xO4 nanoparticles with preserving morphologies and crystallinity, but 
also controlling Co contents and anisotropy constant. Fe3O4 CoxFe3-xO4

II. Co2+ ion exchange with different (Co / Fe) = X ) molar ratio
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Figure 1. Characterization of (a) morphological, (b) structural, and (c) physical properties of synthesized 
iron oxide nanoparticles, respectively.
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In this study, we initially confirmed the nucleation and growth of monodisperse Fe3O4 nanoparticles with 
an inverse spinel structure. 
  Diffusional effects of incoming CoCl2 was investigated using different molar ratios of Co / Fe. The observed 
change in coercivity indicates successful cation exchange. However, the cobalt contents substituted into 
iron oxide nanoparticles do not show linearity, which indicates that other component, potentially  
trioctylphosphine(TOP), participate as a limiting factor.  
  The outcoming kinetics of the cation exchange was controlled by changing the molar ratio of the Fe ion 
extractor, TOP. Highest coercivity was observed at a TOP amount of 16 mmol, with comparable coercivity 
values noted for 50 mmol and 80 mmol of TOP. This can be explained by a 1:1 ratio of CoCl2-TOP for the 
cation exchange and excess TOP functioning as strong ligands, binding to Fe atoms and inhibiting further 
cation exchange. Consequently, the mechanism of cation exchange can be explained as phosphine in TOP 
forming a lewis acid base complex to extract Fe ion and Co2+ instantly being substituted in the vacancy 
formed. In conclusion, by controlling the kinetics of incoming and outcoming elements of cation exchange, 
the anisotropy constant was tuned effectively. 
  

- Casu and Falqui et.al., Chem. Mater. 2018, 30, 8099–8112.
- Kovalenko et al., Nano Lett. 2015, 15, 5635–5640.
- Donega et al., ACS Nano 2019, 13, 12880–12893.
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(Cheon et al., Angew. Chem. 
Int. Ed. 2009, 48, 1234 –1238.)

Monodisperse Fe3O4 nanoparticles with high crystallinity and high physical properties were synthesized. 
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Figure 2. Analysis of Co2+ ion exchange with different Co / Fe ratio of X = 0 ,1, 2, 4, 6, 10 respectively. (a) 
STEM EDS maps (Fe in red and Co in blue) (b) Correlation of molar ratio of Co / Fe with cobalt contents for 
each sample (c) Hysteresis curve of Co2+ exchanged samples at 100K (d) Correlation of Co / Fe molar ratio 
with coercivity and saturated magnetization 

III. Co2+ cation exchange with different molar ratio of TOP 
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(a) Reaction pathways for Fe2+ extraction by CoCl2-TOP complex    

Figure 4. Chemical reaction of CoCl2 – TOP on the Fe3O4 surface (a) Reaction pathways for Fe2+ 
extraction by CoCl2 – TOP: (i, ii, iii) coordination of TOP to Fe2+ and formation of Co-O bond (iv) Extraction 
of Fe2+ as tris-trioctylphosphine iron complex, introducing Fe2+ vacancies (b) incorporation of Co2+ to Vo: (i’) 
Coordination of CoCl2 to Vo (ii’) Formation of Co-O bond and formation of chlorine gas 

Figure 3. Analysis of Co2+ ion exchange with different TOP molar ratio of 0mmol, 16 mmol, 50 mmol, 80 
mmol respectively. (a) STEM EDS maps (Fe in red and Co in blue) (b) Hysteresis curve of Co2+ exchanged 
samples at 100K (c) Correlation of TOP molar ratio with coercivity and saturated magnetization 

Highest coercivity occurred at a 
TOP/Fe3O4 molar ratio of 1, 
indicating the role of TOP as 
strong ligands after cation 
exchange. 

(b) Reaction pathways for Co2+ incorporation via Vo  
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