EGFR Gene Editing via CRISPR/Cas9 and Prime Editing
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We explored two types of gene editing tools: CRISPR/Cas9 and
prime editing by targeting the EGFR gene. The CRISPR/Cas9
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Fluorescence microscopy reporter plasmid, EGFR-targeting sgRNA plasmid, and cas9
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Fig. 3 | a, pegRNA acceptor vector (U6-pegRNA-GG-acceptor). b, Bsal
digested backbone. ¢, pegRNA spacer annealed oligonucleotides. d, pegRNA
scaffold annealed oligonucleotides (5 phosphorylated). e, EGFR-targeting
nine pegRNA 3’ extension annealed oligonucleotides’ sequences (Online
pegRNA design platform: ‘Prime Design’, https://drugthatgene .pinellolab.

partners.org). f, assembled pegRNA vector. Fig. 8 | a, expected gel image result. b, actual gel image data.
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